How Does Brain Plasticity Work ?
The human brain is composed of approximately 100 billion neurons. Early researchers believed that neurogenesis, or the creation of new neurons, stopped shortly after birth. Today, it is understood that the brain possesses the remarkable capacity to reorganize pathways, create new connections and, in some cases, even create new neurons.
According to the website Neuroscience for Kids , there are four key facts about neuroplasticity:
The first few years of a child's life are a time of rapid brain growth. At birth, every neuron in the cerebral cortex has an estimated 2,500 synapses; by age of three, this number has grown to a whopping 15,000 synapses per neuron.
The average adult, however, has about half that number of synapses. Why? Because as we gain new experiences, some connections are strengthened while others are eliminated. This process is known as synaptic pruning. Neurons that are used frequently develop stronger connections and those that are rarely or never used eventually die. By developing new connections and pruning away weak ones, the brain is able to adapt to the changing environment.
The human brain is composed of approximately 100 billion neurons. Early researchers believed that neurogenesis, or the creation of new neurons, stopped shortly after birth. Today, it is understood that the brain possesses the remarkable capacity to reorganize pathways, create new connections and, in some cases, even create new neurons.
According to the website Neuroscience for Kids , there are four key facts about neuroplasticity:
The first few years of a child's life are a time of rapid brain growth. At birth, every neuron in the cerebral cortex has an estimated 2,500 synapses; by age of three, this number has grown to a whopping 15,000 synapses per neuron.
The average adult, however, has about half that number of synapses. Why? Because as we gain new experiences, some connections are strengthened while others are eliminated. This process is known as synaptic pruning. Neurons that are used frequently develop stronger connections and those that are rarely or never used eventually die. By developing new connections and pruning away weak ones, the brain is able to adapt to the changing environment.
Comments
Post a Comment
Comment on articles for more info.