Skip to main content

Visual Memory

Accuracy of visual memory

Visual Memory

Visual memory is recollected information about what one has seen. It involves both the mental storage of such information and the ability to retrieve it. The recalled image of a sunset, the memory of a font type, the remembrance of a tree's appearance: these are all instances of visual memory. Psychologists refer to visual memory to help account for memory in general. It is distinct from other kinds of memory, such as auditory memory (recollection of what one has heard). Some researchers believe visual memory plays an important role in learning. For example, some learning disabilities (including dyslexia) are linked to poor visual memory, such as the inability to remember the sequence of letters in words.



Memory Encoding

Visual encoding is the process of encoding images and visual sensory information. Visual sensory information is temporarily stored within the iconic memory before being encoded into long-term storage. The amygdala (within the medial temporal lobe of the brain which has a primary role in the processing of emotional reactions) fulfills an important role in visual encoding, as it accepts visual input in addition to input from other systems and encodes the positive or negative values of conditioned stimuli.


Higher Accuracy

Visual memory is surprisingly detailed. In the novel test, subjects correctly identified the correct image 93 percent of the time. The exemplar and state test conditions were handled with slightly less accuracy but, at 87 percent and 88 percent, respectively, the margin wasn't large. The test subjects were also very accurate in their ability to detect repeated images, with 96 percent of repeat images being identified, and only a 1.3 percent false positive rate.For details see Experiment


Associating words with images is commonly used mnemonic device, providing two alternative methods of remembering, and creating additional associations in the mind. Taking this to a higher level, another method of improving memory encoding and consolidation is the use of a so-called memory palace (also known as the method of loci), a mnemonic techniques that relies on memorized spatial relationships to establish, order and recollect other memories. The method is to assign objects or facts to different rooms in an imaginary house or palace, so that recall of the facts can be cued by mentally “walking though” the palace until it is found. Many top memorizers today use the memory palace method to a greater or lesser degree. Similar techniques involve placing the items at different landmarks on a favourite hike or trip (known as the journey method), or weaving them into a story.

Experiment to test Accuracy
In the PNAS study, the volunteers were shown 2,500 images, each for 3 seconds. In contrast to prior research, the images were stripped of any background details. The subjects were then shown a pair of images, one of which was previously seen and one that was new. The paired images were shown in three ways; novel, where the image was paired with an image of something from a completely different category (for example, false teeth and a DNA double helix), exemplar, where the image was paired with a different, but similar image (two slightly different starfish for example), or state, where the images were of exactly the same image, but in different conditions (such as a telephone on and off the hook).


One of the major lessons of memory research has been that human memory is fallible, imprecise, and subject to interference. Thus, although observers can remember thousands of images, it is widely assumed that these memories lack detail. Contrary to this assumption, here we show that long-term memory is capable of storing a massive number of objects with details from the image. Participants viewed pictures of 2,500 objects over the course of 5.5 h. Afterward, they were shown pairs of images and indicated which of the two they had seen. The previously viewed item could be paired with either an object from a novel category, an object of the same basic-level category, or the same object in a different state or pose. Performance in each of these conditions was remarkably high (92%, 88%, and 87%, respectively), suggesting that participants successfully maintained detailed representations of thousands of images. These results have implications for cognitive models, in which capacity limitations impose a primary computational constraint (e.g., models of object recognition), and pose a challenge to neural models of memory storage and retrieval, which must be able to account for such a large and detailed storage capacity.

Comments

Popular posts from this blog

Image Search Engine Using Python

Images provide a lot more information than audio or text. Image processing is the prime field of research for robotics as well as search engines. In this article we will explore the concept of finding similarity between digital images using python. Then we will use our program to find top 10 search results inside a dataset of images for a given picture. It won't be as good as google's search engine because of the technique we will be using to find similarity between images. But what we are going to make will be pretty cool. So lets start. Setting up the Environment Our Algorithm How the code looks Lets build the GUI Additional Techniques Setting up the Environment The code we are going to write requires a few tools which we need to install first. I will try to be as precise as i can and if you get stuck into installing some tool then you can drop a comment below and i will help you sort out the problem. So here are the tools and the steps to install

Understanding Python Decorators

If you have ever wondered what those @something mean above a python function or method then you are going to have your answers now. This @something line of code is actually called a decorator. I have red from various articles about them but some of them were not able to clarify the concept of a decorator and what we can achieve with them. So in this post we'll learn a lot about python decorators. Here is a list of topics we'll be covering. What is python decorator Understanding the concept Multiple decorators on same function class method decorator Where can we use decorators What is python decorator A python decorator is nothing but a function which accepts your given function as a parameter and returns a replacement function. So its like something this def decorator(your_func): def replacement(your_func_args): #do some other work return replacement @decorator your_func(your_func_args): #your_func code Now when your_func gets called then

Cordova viewport problem solved

Include the viewport settings in Cordova If you are facing the auto zooming problem of cordova then go read on the full article. Cordova actually ignores the viewport meta tag which causes the pixel density problem. So we need to tell cordova that viewport tag is equally important as other tags. To do this, we need to add some code to a file which is specify in the article. Corodva messes with pixels If you are using the latest cordova version or creating the cordova app for latest android versions then you may have faced the zoom malfunctioning.I also faced it when creating an app. Many of you may have already searched the web and found the answer of changing the meta tag attributes to get it working. But adding target-densitydpi=medium-dpi does not solve the problem for latest android versions. It may work for gingerbread but not for kitkat and others. So the final solution which i found was one of the stackexchange answer but rarely found. So i am gonna two things here, i